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PREFACE

SIMPLE QTMIMWS

k this iext are given the pressure distribution and resistance found by theory and experim-
ent for simple quadrics fixed in an M.nite uniform stream of praet.icaUy incompressible fluid.
The experimental values pertati to air and some Iiquids, especially water; the theoretical refer
sometimes to perfect., again to ~iscid fluids. For the cases treated the concordance of theory
and measurement is so cIose as to make a r6sum6 of results desirable. IncidentaUy formulas
for the velocity at all points of the flow field are given, some being new forms for ready use
derived in a pre~zious paper and gi-ren in Tables I, III. A summary is given on page 536.

The computations and diagrams were made by Mr. F. A. Louden. The present text is a
slightly revised and extended form of Report NTO.312, prepared by the writer for the Bureau of
Aeronautics in June, 1926, and by it released for publication by the ATational Advisory Com-
mittee for Aeronautics. A Hs&of symbols follows the text.

PRESSURE AND PRESSURE DR.4G

Ke assume the ffuid, of constant densik~ and unaffected by ~eight or viscosity, LOhave in
all the distant field a uniform -mlocity qOparaHel to z; in the near fieId the resultant veloei}y g.
If now the distant pressure is e-rerywhere p~) md ihe pressure at any point in the disturbed flow
is PO+ p, the superstream pressure p is given by BernouiHi’s formtia,

ph. = ~– f12/!lo2, (1)

where p~ = pgOz/2,called the .-stop’1 or CCstaggation 97or CCnose’~ pressure.
At any surface element the superpressurk exerts the drag f p dy dz, whose i..mtegralover

any zone! of the surface is the zonal pressure drag,

~= ~p dy dz. (2)

VaIues of p, D are here derived for various solid forms and compared with those found by
experiment.

PRESSURE MEASUREMENTS

The measured pressures here plotted were obtained from some tests by Mr. R. EL Smith
and myself in the Clnited States &Tavy 8-foot wind tunnel at 40 miles an hour. Very accurate
modek of brass, or faced wihh brass, had numerous fine perforations, one a-t the nose, others
further aft, which codd be joined in pairs to a manometer through fine tubing. Thus the
pressure difference behveen the Dose and each after hole could be observed for any wind speed.
Then a fine tube vi-ith dosed tip and static side holes was held along stream at many points
abreast of the model, to show the dtierence of pressure there and at the nose. Next the tube
was thrust right through the model, to find the static pressure before a~d behind it. The
method is too weIl known to require further description.

THE SPHERE

.kume as the fixed body a sphere, of radius a, in a uniform stream of inviscid liquid, as
shown in Table I. Then by that table the flow speeds ati points on the a.. c, y and on the _L. —

surface are
q.= (1 –a’/x’;q,, q,= (1+- cL3/2?J3:Q, q,= 1.5q, sin 0, (3)

where 6 is the polar angle. Figure 1 shows plots of these equations. ——

1.4zoue is a part of the surface bounded by two pIaries normal to W. CkuaIly one pIane is assumed tangent ta the mrface at its upstreamend.
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To graph p/p. in Figure 1, we subtract from the line y= 1, first q.2/q$ to show the pressure
along x; then qt2/q02to portray the surface pressure. A similar procedure gives the superpressure
in the equatorial pIa.ne.

The little circles show the actual superpressures found with a 2-inch brass sphere in a tunnel
wind at 40 mile: an hour. These agree well with the computed pressures except where or
near where the flow is naturally turbulent.

By (3) and (l), on the sphere’s surface p/pfi= 1– 2.25 sin2@; hence the zonal pressure drag
~p.2rydy is

D = xa2sin20(1 – ~ sinze)p., (4)

for a nose cap whose polar angle is 0. With increase of O, as in Figure 2, D/p% increases to a
maximum .698 a2 for @=41° —50’ and p = O; then decreases to zero for (?= 70° – 37’; then to its
minimum —.3927 a2 for @= T)2; then continues aft of the equator symmetrical with its fore
part. Thus the drag is decidedly upstream on the front half and equally downstream on the

I
-5 -4 -3 -2 -1

Le ng+h in A the.<

FXG.I.—Velocity and pressure along axes and over surface of spherq graphs indicate theoretical ~aluw.
circles indicate pressures measured at 40miles per hour in 8-footwind tunnel, United States Navy

rear half, having zero resultant. The little crosses, giving D/pn for the measured pressures,
show that the total pressure drag ~ air is doIZ,nstream, and fairly large for a body so blunt M

the sphere.
Figure 3 depicts the whole-drag coefficient ‘ (7D= 2D/7 p a2q~, of a sphere, for the manifold

experimental conditions speci~ed h the diagram, plotted against Reynolds Number R = 2 ~@/v,
v being the kinematic viscosity. For 0.2 <R< 200000, the data lie close to the line.

CD= 28R-s’ + .48, (5)

an empirical formula devised by the writer as an approximation.
For .5< R< 2 (5) fairly merges with (keen’s formula

cD=24&1+4.5, (6)

—

and for R <.2 Stokes’ equation QD= 24/R is exacfilY verified. Both these formulas are theoretical.
Stokes treated only viscous resistance at smal] scale; oseen added LO Stokes’ drag coefi?icient,
24/R, the term 4.5 due to inertia.

: From the drag D= CD.S, ‘irhcro~ is the rnodcl’s frontti area, one derikrcst.hcdrag coc’T1cienLCo= D/psS.
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Over an important E range Figure 3 shows CD= .5, giving as the sphere’s

D=.5p. s,

“519

whole drag

(7)

where S = r a2 is the frontal area. That is, the sphere’s drag equals Mf its nose pressure times
its frontal area. I?or R <.2 Stokes’ ~ake, D = 6ir ,UG qe, has been exactIy verified experi-
mentaHy, as is weIl known.
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THE ROUND CY~”DER

h~ext as,ume au ecdess circular cybder, of radius a, fixed trams-verse to the stream, as
indicated in Table 1. By that tabIe the flow speed at points on the axes x, y and on the surface is

g== (1 - a2/z2) gO,qy= (1 +a2/y2) qff, q~=2 qa sin $, (8)

w flere 6 is the polar angIe. PIots of (8) are shown in Figure 4.
Graphs of p/pz, made as expIained for the sphere, are ako given there, together with experi-

mental vaIues, marked by smalI circles, for an endless 2-inch cyLinder in a tunnel wind at 40
miIes an hour. The agreement is good for points well within the smooth-flow region.

On the surface p/pn = 1 –4 Sinz 6. The integral 2 Y’ pdy &es, per unit length of
c.yLinder, the zonal pressure-drag formula,

0

Dfpz=2 a sin 0–~asin3 e. (9)

~~~,~~7p3~
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SYMBOLS: -

D = L?(ag of sphere
d = Dlam. ‘, ‘r
S = Area - - = 7rci74
V= i7e/afk speed of sphere & fluid
p =D~nsify of f7uid
v = Kmemuhc viscosify

Q
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Fiffe/. sphere in air. d=/62 cm
‘Nouvel/es Recherches “ef cv, /9/4.
O. W! Si/vey. Mercury drops m cosfor

011.d=. 0115to. 0756 cm. pf?Y% Rev> 19[6.
f%D. /lrno/d. Rose metal spheres m

colza oi7. d= .o/3 fo. /41 cm. Phi7.,Mug, 1911!
L;ebsf er A Schifler. Steel spheres in

glycerin, suqar solutions A wu+er.
d=. I fo .7cm. Phy.s. Zeif., 19Z4.

Air bubbles in wof er.
d=. 0094 fo .061 cm

Air bubbks in onifine
d=.007 fo .l[~ Cm

\

Poraffih spheres in anitine Ii.S AIlen
d=.069 fo .316 cm Phd Mag.,1900

Amber spheres in wofer
d= .114 fo .346 cm

Sfeel spheres in wafer
d=.318 to .792 cm 1

d=.8cm
)

Sfeei,spheres ] .
d=f.8 CM in or
d= 62/cm

1

C. Wiesefsberger

d = 9.98 cm ffo//ow coppe<
I

Phys., ZeiL

d=14.2 CKI spheres in or
/922

d= 28.25 cmJ J
A.F. Zohm. Polished pine sphere in air

( Wifhouf correction for oir compression)
d=10.12 cm [7620 c V< 27432? cm/sec.)
PhiL,Maq., [901.

Atmospheric Tunnel Mop/e spheres in
d=15& 20 cm

1

ai--- L?L Bocon
Vc+~~bJec~fy Turmel and E G.Reid

A!A.CA. Rep?. /85

Fra, t,—~ra.g ccdiicimt for a sphere in stmdy translation through ~ V~DUSfluid
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This is O, 2a/3 (max.), O, – 2a/3, for 9= 0°,30°,60°, 90°; and is symmetrical about the equatorial
plane x= O. In Figure 5, the little crosses give D/p. for the measured pressures, and show total
D/p. =2.33a.

Figure 6 delineates the drag coe%cient CD plotted against R = 2 aqO/v, from Wieselsberger’s
(Reference 1) wind tunnel tests of nine endless cylinders held transverse to the steady flow.
The faired line is the graph of

C~=9,4R-.8+l.2, (lo)

an empirical equakion devised by the present writer.
For very low values of R, Lamb derives the formula

8
OD= (2.002 – log,Z2)R’

(11)

whose graph iu Figure 6 nearly merges with (1O) at R = .3.

For 15000 <R< 200000, Figure 6 gives CD= 1.2; hence the drag per unit frontal area is

D= 1.2P., (12)

which is 2,4 times that for the sphere, given by (7).

THE ELLIPTIC CYLINDER

An endless elliptic cylinder held transverse to the stream, as shown in Table I, gives for
points on x, y qnd on its surface,

$“.= (1 –~)flo, g,= (~ +~)qo, qt= (1 + b/a)qo sin 6, (13)

where m, n are as iu Table 1. Amidships g ~= (1+ b/a)qO= 2q0 for a = b, as given by (8). Graphs
of (13) are given in Figure 7.

To find a’, V for plotting (13), assume a’ and with it as radius strike about the focus an
arc cutting y. The cutting point is distant b’ from the origin. Otherwise, 3’= ~a’z – C2,where
cz= az—b2= const.

With a/h = 4 one plots p/pn in Figure 7, as explained for the sphere. The circles give the

experimental p/pn for an endless 2-inch by 8-inch strut, at zero pitch and yaw, in a tunnel wind at
40 miles an hour. The theoretical and me~sured pressures agree nicely for all points before,
abreast, and well behind the cylinder.

Again, sin2@= a2y2/(b’ + c’y’), if C2= a’– 62. Hence on the model

This gives the zonal pressure drag, D =2 J ‘pdy, per unit length of cylinder, 01
a

(14)

(15)
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whose graph, for a/6 =47 appears in Figure 8. It rises from o at the nose to its maximum where
p = O, &hen faI1s to its minimum amidships.

w ~-

s&Q
C-ib ~

.—— _ _

-/2 -10 -8

wind
FIG. i.—l”docity and pressure zdongaws and over surface of endkss eUiptic cyIinder. Graphs irdicatc themetfc& value;

circles fndicate pres.sse rceaanred at 40 mifes per hour in S-footwind tunhel, U-nited Stites Navs

●

/’-”
.2

I
f=.3

FK. 8.—l?resswe and presame-drag on endks elliptic c@inder. Graphs :fndimte theoretical Fakes; tides
irdkde pressure p/p. measmed at 40 miles per hour; crwse indicate pressure-drag DIP. computed from
measured pressure

Whatever the value of a,lb, the whole pressure on the fronfi half is negative or upstream,
as for the sphere and round cylinder, and is balanced by the rear drag. For b fixed it decreases
indefinitely with bia.
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The crosses marking actual va~ues of llfpn found in said test show & downstream resultant
D. In fact, i~is one-third the whole measured drag of pressure plus friction, or one-half the
frictkm drag.

For the cylinder held broadside on, 6> a and az– bz= – Cz,hence changing Czto – C2under
the integral sign of (15), we find

2 ‘a :,~)z log. ~~y,D/pn=–4ba~y–b —
P+ q

(16)

where now C2= V —az. With b fixed, the upstream pressure dr~g on the front half increases with
6/a, becoming infinite for a thin flat plate. It is balanced by a symmetrical drag back of the
plate.

Such infinite forces imply infinite pressure change at the edges where, as is well known, the
velocity can be g = -jzP,/P = a, in a perfect liquid whose reservoir pressure is p,= co. Otherwise
viewed, the pressure is p, at the plate’s center (front and back) and decreases indefinitely toward
the edges, thus exerting an infinite upstream push on the back and a symmetrical downstream
push on the front. In natural fluids no such condition can exist.

THE PROLATE SPHEROID

A prolate spheroid, fixed as in Table I, gives for poiuts on z, y and the solid surface, respec-
tively, the flow speeds

Q.= (1 –n)Qo, g,= (1+ ~)!lo, g~= (1 +k.) q, sin 0, (16)

~

..–——

1 !
- !0 -8 -6

>
-4

Wt’hd ,Lengi’h in inches

FrG. 9.—Veloeity and pressure along axes and over snrface of prolate spheroid. Graphs indicate theoretirzd values; circles
indicate pressures measured at 40 miles per hour in S-footwind tunnel, Unitsd States Navy; dots give pressures found
with an equal model in British test, R. and M. No. W British .4dvisors’ Committee for Aeronrmtios

,

_&
L

FIG. 10.—Pressure and pressure-drag on prolate spheroid. Graphs indkate theoretiwd vehw dotsindi@e
measured pressure PIP. from Figure 9; crosses indicata pressure-drag DIPs computed from measured pressure
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where & is to be t~ken from Table 11. Graphs of (16) are given in l?igure 9, for a model having
fz/b=4, viz., k==0.082.

For this surface p~pz plots M in Figure 10. For a 2 by 8 inch brass model values of p/pX
are shown by circles for a test at 40 miles an hour in the United States NTavy tunnel; by dots for
a like test in a British tunnel. (Reference 2.)

By (16), for points orL the surface p/pn = I –qt2/go2= I – (I + k=)2 sin’ 6. From this, since
Sinz o = a2y2] (b&+czy2), the zonal pressure drag J p. 2 z y dy is found. Thus

(17)

Starting from y= O, D/pn increases to its maximum when p= O, or sin 6=1/(1 +ka); then
diminishes to its minimum for y= 6. Figure 10 gives the theoretical and empirical graphs of
D/p. for ajb =4.

For b fixed the upstream drag on the front half decreases indefinitely with 3/u, becoming
zero for infinite elongation.

013LATE SPHEROID

The flow ~eIocity about an oblate spheroid with its polar axis aIong stream is given by
formulas in Table 1, and plotted in Figure 11, together with computed values of p/pz. NTO
determinations of p or D ~ere made for an actual flow. The formula for D/pz is like (17),
except that C2= ?P– a2, and k= is larger for the oblate spheroid, as seen in Table 11. For 6 fixed
the upstream drag on the front half increases indefinitely with b~a.

Wind
>

w

Fm. I l.—The.metie& velti.y an~ pm.s.xue &loQgx axis of ablate spheroid. Diameter[thicknesw =.t

CIRCULAR DISK

The theoretical flow speeds and superpressures for points on the axis of a circular disk fixed
norma~ to a uniform stream of inviscid liquid are plotted in Figure 12, without comparative
data from a test. One notes that the formuIas are those for an oblate spheroid with eccen-
tricity e =1.

For 1500<qo a/v <500000, WieseIsberger (Reference s) finds for the air drag of a thin
normal disk, of area S,

D=l.1 p%s, (18)

or 2.2 times that for a sphere. For aqo/v extremely small, theory gives

D=5.11ip(z q*, (19)

m is well known. Test data for a complete graph, inchding these extremes, are not yei a-raiIable.

FIG, 12.—Theoreticsi pressure snd wkcity slong axis of &
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REGIONS OF EQUAL SPEED

In the flow field q,pareconstant ~vhereq~2+g~2= constant, viz. ~vhere

Q*/go*= (1 +m)2 sin26+ (1 – n)’ cos2f3= const.

In particular for the region q= q,, this becomes

tanzo= % 2 – n = a’4_
m 2+?n b’e ‘an2fi*

1 I I I I I .bl
.s

I u I , ! t t 2%I
,Erid/ess e!hbfic cylinder, 2’ ‘r q% .

FIG. 13.—Inertia coeffiekmtvs. elongation. Plotted from Table II

which applies to all the quadrics in Table L Clearly tan 0= O for n= 2; tan20= njm for
m, n = O, viz. for all distant points of (21). For these points the normal to any confoca} elIipse
lies along the radius vector and asymptote of (2 I ), as seen in Figures 14 to 17.

FIG. 14.—Lines of steady flow, lines of constant speed and pressure, for
infinite frictionless liquid streaming paat a sphere

For the sphere n= 2m = az/@; hence (2 I ) becomes

2r3– a3
‘an*e= 22?-3– .5i3

(22)

where r= a’ = y[;=+ y’. The form of this is depicted in Figure ]4.
—

“ tani3=YIZis the sIope of a radiaI line through the point (x, y) where (21) cuts a co~focal cume a%’, of Table I. Knowing a’, V, d, to lmate
(z, g) draw across the radial Hne an arc of a%’by sliding along thez, v axes a straightedge subdivided as in the ellipsograph. The operation is rapid
and easy.
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For a round cyIinder n= m = a’~r’; hence

which is

~an’o = 2T’ – az
-z or, 2r’ =az see 20,

the section of a hyperbolic cylinder, as in Figure 15.

v

I?IG. 15.—Liies ofsteady flow, lines of constant speed and presaur% for Minite frictiordess liqnid srrwming across endka
ronnd cylinder

/- -.

. .——
—— ..

●

FIG. 16.—Lines of steady flow, lines of conaaant speed and presmre, for inEnite frictionkss Iiquid
streaming across endless efliptic cylinder
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A plot of (21) for an elliptic cylinder, fixed as shown in Table I, is given in Figure 16; for a
prolate spheroid in Figure 17.

Besides the region (21), having q = go, it is useful to know the lirnit of perceptible disturbance
say where q2/g02= 1 + .01. This iU (20) gives

(l+?n)* sin’6+(1-n)* cos’@=l+.ol, @4)

which applies to all the quadrics here studied. Hence

tanz~=fl E-E+ 0.01
‘m 2+77L m(2+m)cos2e’

(25)

A graph of (25) for a round cylinder is shown in Figure 15. Like plots for the other quadries
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FIG. 17.—Litiw “f st.dy flow’,liues of constant speed and pressure, for in5nit.e friction-
less liquid streaming past a prolate spheroid. Full-1ine curve I=Q. refers to stream
parallel to ~; dotted curve Q=Q. refers to stream imlined 10” to z

If in (20) a series of constants be writte~ for the right member, the graphs compose a family
of lines of equal velocity and pressure, covering the entire flow field. Rotating Figures 14, 17
about x gives surfaces of q = qO.

COMPARISON OF SPEEDS

—

Before all the fixed models the fiow speed is gOat a great distance and O at the nose; abreast
of them it is g, at a distance, and (1+ 7cJq0 amidships.

The flux of q – q. through the equatorial plane obviously must equal qoS where S is the
body’s frontal area. Hence two bodies having equal equators have the same flux q,il, and the
same average superspeed or average q —q.. But the longer one has the lesser midship speed;

,,
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hence its outboard speed wanes less rapidly -with distance a~ong y. A like reIation obtains
aIong x from the nose forward. These relations are shown in the velocity graphs of Figures
18 and 19. A &gure sim.dar to 18, including many models, is given in Reference 4.

I

FIG. IS.-SuperWed graphs of ffmv speed abreast of errdIess round and efliptic
cylinders of same thiekneee &.ed transverse to an idnite stream of inviscid
liquid. At great distsnee flow speed is g.

FIG. 19.-SuperImsed graphs ofaxiel flow speed before tkuw endless cyIinders 1, ~ snd 3 (3ossatfng
2, e~ fied ~=~erse to M Wte streem of inviscid~iquid. M geat disteuee flaw weed is !.

COMPARISON OF PRESSURES

The foregoing speed relations determine those of the pressures. The nose pressures al~
me p.= p~02/2; the midship ones are p =p. — (1 + ?iJzpa. The drag on ~he front half of tihe
model is upstream for aIl the quadrics here treated; it increases with the flatness, as one proves
by (15), (17), and is infinite for the normal disk and rectangle.

APPLICATION’ OF FORMULAS

The ready equations here given, aside from their academic interesb in predict.iug natura[
phenomena from pure theory, are found usefuI in the desigm of air and water craft. The formula
for nose pressure long has been used. That for pressure on a prolate spheroid, of form suitable
for an airship bo~, is so trustworthy as to obviate tihe need for pressure-distribution measure-
ments on such shapes. The same may be said of the fore pzwt of weJ.1-formed torpedoes deeply
submerged. The computations for stiffening the fore part of airship hulls can be safely based
on theoretical estimates of the locaI pressures. The velocity change, -id away from the
model, especially forward of the equatorial plane, can be found more accurately by theory
than by experiment= The equation (21) of undisturbed speed shows whereto place anemometers
to idicate, with least correction, the relative speed of model and general stream.

1.
‘-J-.

3.
4.
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SYMBOLS USED IN TEXT

Cartesiancoordinates; also axes of same.
Polar coordinates.
Angle of attack of uniform stream.
Length of arc, increasingWithIS.
Inclination to z of normal to confocal

curves in Table I.
Velocity function.
Streamfunction.
Resultant velocity at any point of fluid.
Velocity of distant fluid (parallel to x

Kinematic viscosity.
Nose pressure= p q#12.
Pressurein distant fluid.
Superstreampressurea.ny\vhere.
Zonal pressure drag= .f p dy dz.
WhoIe drag.

x, Y-------
r,@--------
a--_---_--
s------_--
8-------_-

P---------
+---------
q---------
qo--------

KE, qu-----

qt--------

qlz--------
P---------
!J---------

v---------

Pn--------
po--------

P---------
D_.-----_-
P--------

Frontal ar=aof model.
Drag coefficient= D ‘PJ$.
Reynoldsrmmber.
Radius of sphere, cylinder.
Semiaxes of eHipse.
Semiaxes of confocal ellipse.
Eccentricity of ellipse.
Eccentricity of confocal ellipse.
Focal distance= ae=a’e’ = ~la~–FJ
Inertia factor (Table II).
Quantitiesdefinedin TablesI,H.
Colatitude (see equation 30).

a_------ _,-
a, b---------
a’, b~--_.. _

axis).
Velocity at points on z and g axes (parallel

to 3 axis).
VeIocity along confocal surface or model

e----------
e’________
c---------
ka--------
?n,92, ‘m..__
C____–____

surface.
VeIcwity normal to confocal surface.
Density of fluid.
Viscosity.

TABLE I

Flow functions for simple quadrics fixed in a uniform stream of speed qo along z positive

Value of functions at any confocal surfaces ofsemiaxes a’, b’

-... ––-

Symbol defini-
tions Form ofquadric

Sphere

Circular cylinder

EIliptic cylinder

Prolate spheroid
e=;4;2—~2

Oblate spheroid
e=!_~b2-a2

b

CircuIar disk
a=o, e= I

Component velocities
!2[>!7%Velocity function IP Stream function *

Differentiation along
arc s of either figure
gives:

=-(l+m)qw,where

a3
m= 273

I See diagram A
(fig. 20) sin”~,v-slid for all the

figures;
~.=); +=.-(l_n) q.

cos 6, for the cylin-
ders:

@=–(l–fOfzou,

qn=ia4!
y by ds=–(l–n)

qo cos e, for the axial
surfaces; viz., sphere,
spheroids} disk.

Fora’J b’=a, bl Table
II gives m.; whence

q,= (I+mt) q. sin 0,
astheflo\vvelocity on a

fixedquadricsurface.
g.:=t..O for disk, since

Remark—both q, qn
can be derived from
eitheZp_or y’.
onl;gi; q;; ~:~. ~~h~~

point t~ereof—
qt=qt sin 8, q.=~.

Cos 9

$=– (1–n) qov,

b a+b
‘= Fa’+b’

w= —(l+m) qw,

b a+b
‘=Z a’+b’

P=–(l+?n)qc%

I+el
—–2e’fWe -j _eI

n= —
2e”

log. ~—~2

, See diagram B
[ (fig. 20)

I
[

e’b’
~—sin “e’

m= —
ea
––sin ’10
b

era’
-v- ‘sin‘le’~=

ea
--—sin ‘Ie
bSee diagram C

(fig. 20)

4=–+(1–n) ~oY2)

I
I —– .+

I=-si’’-’’’:f;=-:f;-s)n-’e’)2 bm=–
(ri-u ,

v, $, in elliptic coordinates, can be found in textbooks; e. g., $$7] ,105,10S,Lamb’s Hydrodynamics, 4th Ed.
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TABLE II

inertia fact ors k.* for quadric surfaces in steady translation aIong axis a in Figure 20

531

IZUiptic cylinder, E=a/b
EIonga-

1 tiOQ E k==+

1.00 1.000
1.50 .667
2.00 .500
2.50 .400
3.00 .333
4--00 , .250

[ 5.00 .200
6.00 .167
i. 00 .143
s. 00 .125
9.00 .111

I 10.00 .100
t~ .000
t

I
Prolate spheroid E=ajb ~

~om l&e_2e ; Oblate spheroid E= b/a

ka=–
a’ l–e

k.=–
eli7-E Sin-le

Ioge *—*2
e—E sin-Ie

0-500 0-.500
.305
.209 1: ;%
.157

~
1.AJf3

.121 L 742

. 0s2 2.379

.059 3.000

.045 3.642

.036 A 279

. fM9 4915

.02’4 5.549

.021 6.183

.000 m
1

“b. this tsbIe k.=rrh of Table 1, VIZ,the value of m when a’, LS=a, b. Lamb (R. and M. NTO.623,Brit. .4d.i. Corn. Aeron.) gives the numerid
%YIIUCSm the third cokm.n above. For met’on of effiptic cyfimler aIong b axisinertia factor is Ei=a/b.

Diagram A Y Diagram B Y Diugrum C T/

—
rzo

FIG, 2(3

VELOCITY AND PRESSURE IN OBLIQUE FLOW ~
PEIX(XPLEOFWILOCITYCO%lPOSITION

.4 stream qOoblique to a model can be resolyed in chosen directions into component streams
each ha-ring its inditidwd -velocity at any flo-w point, as in Figure 21. Combining the inditiduals
gives their resdtant, whence p is found.

FELOC!IT1’ FUNCTION

Let a uniform &te stream go of intiscid liquid flowing past a fked &psoid centered
at. the origgn have components ‘~, ~, ~ along x, y, z, taken parallel, respectively, to the semi-
axes, a, b, c; then -ii-efind the -reloclty potential p for q. as the sum of the potentials pa, ph~qc
for u, V-, ~.

In the present notation textbooks pro-ie, for any point (r, y, z) on the confoca.1 ellipsoid
at b’ c’,

p== – (I+m=) Ux, (26)
and give as constant for t-hat surface

~~=+””f. H.J-’fmdY c * - (2T)

f

co

the multiplier of being constant for the model, and k= a’ ‘– a’. .4dding to (26) analogous
.A .

p= – (1+77?,=)Lk–(l+?iiJv2J– (l-iw.=)wz=– (l+m)Q?7i, (28)

~‘TMsbrief trmtment of oblique flow was added by request after the preceding taxt was olished.
“ Simple formnfss for this integml and the correspm@ng b, c ones, published by Greene, R. S. Ed. 18SS,are ~:ven by Dedar Tnckerm.an in

Report No. 210 of the NritimrafAdvisory Committee for Aeronadies for 1925. Some ready vsfues are lissed in TabIes LIf, IV.
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where h is the distance of (x)y, z) from the plane P=O, and ~a,mb,mq-ma.re generalized inertia
coeffuients of a’ b’ C[ for the respective streams U, V, W, go. For the model itself the inertia
coefficients usually are written k., kbf k,, k. The direction cosines of h are

(29)

as appears on dividing, (28) by (1+ m)qo, the resuhant of; (1 + m~) U, (1+ m b)V, (1+ m,) ~.

EQUIPOTENTIALS AXDSTREAMLINES

On a’ V c’ the pIane sections P= constant are equipotential ellipses parallel to the major

section q = O, and dwindling fore and aft to mere points, which we call stream poles, where the
plane (28) is tangent to a’ N c’. If e is the angle between any normal to a’ V c’ and the polar

?/

1 ~f&I+!7*v
Ly .=s

,.,.- 19-----

“’”’:/---=– b’....’.-5-

I
-—

\\ I

“a. .
\ ----–.-_J

\ I
\l

\
\
‘v
t

FIG. 21.—Super@sitiou of streamline velocities for component plane flows @raIIeI
to axes of elliptic cylinder

~ormal, whose direction cosines are L, M, i?, we call the line E= const. a line of stream latitude.
Thus e is the colatitude or obliquity of a surface element of a’ & c’. The line E= 90° is the stream
equator. This latter marks the contact of a tangent cylinder parallel to the polar normal, viz,
perpendicular to the plane (28), as in Figure 22. If 1,m, n are the direction cosines of any normal
to a’ U c’

cos c=lL+mM+niV, (30)

Since the streamlines au cut the equipotentials squarely,3 the polar streamline must run
continuously normal to the family of confocal ellipsoids a’ b’ CF. Hence it forms the intersec-
tion of a pair of confocal hyperboloids, and at infinity asymptotes a line parallel to go through the
origin. This straight line may be called the stream axis. Its equation is x: y: z = U: V: W.

*On the model, therefore, the streamlines are lougitude Iines, viz. orthogouals to the latitude lines.
.
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COMPOh-ENT VZLOCITIES3

At any point of any confocaI surface a’ 7 e’ the stz-eamline velocity q, perpendicukw to the
equipot entiaI ellipse there, has components gn, q~, respectively,
and the tangent s in the plane of q and n. By (28) we have

where – ?3Y,EYi= (1 + ri)g~~, = max. gt, is the equatorial ~elocity.
-relocity due to p. is

–;(l+?na) uz=-r(l-n.=)u,
n

n= being constant on a’ 6’ i’, as may be shown. SimiIarly, p~, p,
(1 –n.) W; hence the whole normaI component is

along the surface normal n

(31)

By (26) the inward normal

(32)

contribute —m(l –n~) V, – n

q==–l(l–na) u–m(l–nb) v–n(l–nc)w=~. Cos e, (33)

where ~n= [(1 —n~)z P+ (1 —nD)zV+ (1 —n,)2TP]”5 =m&r. qn is the normaI velocity at the stream
poles. Some values of n., n, are given in Tables I, III. One also may fid (33) as the normal
derivative of (28).

We DOT state (28): At any point of a’ V c’ the vekwity potential equak ~Ji, the equatorial
speed times the distance from the plane of zero potential. SirniIarly (31) (33) state: At any
point of a’ b’ c’ the tangential speed @ sin e) equals the equatorial speed times the sine of the
obliquity; the normal speed (Q. cos e) equals the polar speed times the cosine of the obliquity.
This theorem applies to all the confocak, e~en at the model where gn= O.*

Incidentally the normal tlux through a’ V c’ is f~n cos e- dS=7n J d~+, There S6 is the pro-
jection of E on the plane of @= const. and equals the cross sec~ion of the tangent cylinder.
The whole flUY through a’ b’ c’ is therefore zero, as shouId be.

POLAR STREAMLINE

Some of the foregoing relations are portrayed in Figure 22 for a case of plane flow. Note-
worthy is the poIar streamline or hyperbola. Starting at intlnity paralIel to qO,the po~ar fla-
ment runs with waning speed normally through the front poles of the successive confocal sur-
faces; abuts on the model at its front pole, or stop point; spreads round to the rear pole; then
accelerates downstream symmetric with its upstream part. Its equation qt= O= ZWfh can be
written from (28)

1 + ~fibV*
gt=(l+rn=) Usti8-(l+rnh)Tcos 0=0, ortanO=~~ (34)

a

This asymptotes the stream axis y/x = V/U; for at infinity m=, m,= O, and tan O= V/ U. P1ane-
flow values of m., ra, are given in Tables I, 111.

AU the confocal poles are given by (34); those of the model are at the stops where

~ano=wa v (#y—=——.
li-k~u 62X

(37)

‘Phua on an elliptic cylinder they are w-here y/z= 63/a3. V/U; on a thin la.mina they are at
z = + c cos CY,as given in the footnote. Tables 11, IT give values of ?G, .&.

4 An makgoua theorem obtains a.ks for any other uniform steady stream, say of heat or eleccritity, that has+zero normal cornpment at the boumd.

—

ary ellipsoid aud zero concentration in the flow fieId.
“ To graph (34)we may w the known relations. /

km 6=~2:-$ tan 0+ (35)

where tan a = V; Uis the sIoPe of g. or the aaymptote to (34). Thus (34) becomes a’/b’= (I+md/(I+?n.), which with the tabtiated dues of
m., m. reduces to

z @—--1 , (36)@~# ~ ~z~mz~

a hyperbola whose aemiazes are c ma a, c sti CC,c &ing the focal dfatance. ilr this treatment Z=U’ cm a, y=b’ sin a, a being a fixed eccentric
angIe of the aucces.ske confccal elip22s.
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Each angle of attack has its own flow pattern; each itspolar streamlinegiven by (34).
A c,lose-graded family of confocal ellipses and hyperbolas therefore portrays all the poles and
polar streamlines intheplane abforall angles of attack. The family can rewritten

x=a’ cos a, y = V sin cf. (38)

Thus, giving a’, b’ a set of fixed values, then a a set, we have the confocal families

the first being ellipses, the second hyperbolas like (36) below.
Similarly, the locus qn= O, or q= ij~, is written from (33). With F= O,

(39)

(40)

Its discussion is of minor interest.
DRAG AND MOMENT

Formulas for the pressure p all over the simple quadrics here trea.tied are well known, for
obIique as well as axial flow, and serve to find the drag and moment. For uniform flow the
resultant drag is zero; its zonal parts can be found as heretofore. The moment about z is the
surface integral of p (g dy dz —x &v dz), and generally is not zero.

REGIONS OF EQUAL SPEED ABOUT OBLIQUE MODELS

Compounding the velocities (31), (33) at any point in the a~ plaDe, as in Figure 22, gives
for g constant

q2=[(l+md) Usin 6– (1 +m~)~ cos f3]2+~(l-na) lJcos ~+ (I–na) V sin f3]2=const. (41)

In particular for qz= U’+ V’ (41) gives

tan @=$(Ak~BC+A2)=a& tanfi. (42)

where K= V/U, and “
n=(2–?z.)

A=(l+ma) (l+mb)- (l-n= )(l-nb), B=ma(2+m.) -n, (2-nb)E2, oD=-K2—–?nb(2+?n J.

Y

&klz.,
,,.<”“

‘,
,,’ $.\ t,--..

-.~. ,’ .,, -rI.-,
-... /

--<’/ -..,
,.

—.—- &
1

7“*-:=,’ -—x

-0

I
.#au- %,

FIG. 22.-Polar streamline and companent velocities for uniform stream of inviscid liquid about oblique
elliptic cylinder

.
For an elliptic cylinder, as is well known.

b a+h b a+b a a+b a a+~
‘a= Za’+b” ‘“= T’a’+N’ ~b=~ ;,~ji~ .

‘~=za’+v’

which determines A, B, 0, and thence /3 in terms of a[ V. Thus, for an endless elliptic cylinder
of semiaxes a=4, b = 1, yawed 10° to the stream, i. e., V/U= tan 10° = .1763, the graph of (42)
has the form shown full line in Figure 23. This graph takes the dotted form when V= O, g, = U,
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For a proIate spberiod of semiaxes a =4, b =1, yawed 10°, the graph of (42) is shown in
Figure IT.

FIG. 23.-Lines of steady flow, lin~ of consknt, speed end pressure, for irrlWte frictionkm IiquId
streaming across endIeS elliptic cylinder. Dotted curve refers to stresm parslkl to z : full-line
curve q=q. refers to stream iml~ed W to z

The two values of tan 13in (42) are

tan &=$(A + J-*), tan B,=%(A – %=’), (43]

from which are readily derived

(44)

(43)give the z-ward ticli..natio~ p,, p,, of the asymptotes of the curves q= q.. AS can be
proved, the interasymptote angle ~1– p2 Temabs consfimt as K( = v/Q varies and the asymp-
totes rotate through ~(pl + P2) about the c axis.

Thus, with an elliptic Gybder, ~v@ A, B, ~ their values at w makes

tan (13L-B2) = m,
K(a+b)

tan (61+ 82) = ~ _aK2 ; (45)

hence the asymptotes confi~ue rect.ang~ar, as ~ F@re 23, ~Me with Varying angle of attack

they rotate through ~(pl + i%). Or more generally one may show that -& (/3,– M = O.“. I%– I%=

Const.
A simiIar t.reatmenfi .appUes to the other figures of Table 111. For fl the cylinders the

inkeraspptote angle is 90°; for the spheroids it is 2tan-’~2= 109° –28’ in the ab plane.
Figure 17 is an example. If the flow past the spheroids is paraIIel to the h pkne the inter-
asymptote angle for the cw~es q = qa ~ ~ha$ plane is obviously ~affecked by stream direction. “
It k 90° for infinitely elongated spheroids; 109” – .28’ for m others. Excluded from the gen-

erakations of this paragraph are the &telY t~ figues, such as disks and rectangles edge-
wise to the stream, thab cause no disturbance of the flow. Passing to three dimensions, we
note that the asymptotic hes form aspptotic cones hav~g theti vertex at the origin.

424SSS2745
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SUMMARY

For an infinite inviscid liquid streaming uniformly, in any direction, past an eIlipsoid or

simple quadric:
1. The velocity potential at any confoeal surface point equals the greatest tangential

speed along that surface times the distance from the point to the surface’s zero-potentiaI plane.
2. The tangential flow speecl at said surface point equals the greatest tangential speed

times the sine of the oMiquity, or inclination of the local surface element to the equipotential
plane.

3. The normal speed at the point equals the greatest normal speed times the cosine of the
obIiquity.

4. The locus of q = q. is a cup-shaped surface asymptothg a douMe cone with vertex at

the center.

5. The vertex angle of this cone is invariant with stream direction; for cylinders it is

90°, for spheroids it is 2tan-l@ = 1090–28’.
6. The velocity and pressure distribution are closely the same as for air of the same

density, except in or near the region of disturbed flow.
7. The zonal drag is upstream on the fore half; downstream on the rear half; zero on the

whole. These zones may be bounded by the isobars, e const.
For the same stream, but with kinematic viscosity v, if the dynamic scale is R= q~d/v,

d being the model’s diameter:
8. The drag coefficient of a sphere is 24/R for R<.2; 28R-”85+ .48 for 0.2< R<200,000;

and 0.5 for 10~<R<lOs.
9.The drag coefficient of an endless round cyh.nder fixed across stream is 8r/R(2.002 –

Iog,R) for R<.5; approximately 9.4 R-a+ 1.2for 0.5<R<200,000; 1.2 for 104<R<200,000.
10. For 15,000<R<200,000 the drag coefficient of a round cylinder is 2.4 times that for

a sphere.
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TABLE III

Flow functions for simple quadrics in stream V along g positive

(~or all shapes@= – (l+w) Fg, qt=(l+?nb) F sin 6*

I

Shape

Sphere

1

I
&cuIar cylinder

HLiptic cylinder ~
a a+h.—
~’ u’+ b’

ProIate spheroid I l+e’ 2e’loge — – —
l—e’ 1—e~z

e.~ ~
—

~oge 1 + e~?

Fe-2’S

Oblate spheroid
I

1 ,~e= —v&-a2
b

I j_!;::e’

537
.

I+er
log. —

l-eF-2e’W I
~om l+e _ ~e 1—2@

‘e l–e l–e~

—

Inertia factors ,%6for quadric surfaces in steady translation along axis b in Figure 20

! ~llip ~yl ~=a,b

ProL spher. E= a/b I

Mwlg;. “
~oge l-l-e 2e I ObL spher. E= b/a

kb =;

!
J

k6=–
l–e —l—e2 ~ k6=– e—E sin–le

1–2$log, pe–2c= \ e@(e2+ I) —E siu-le

I. 00 L 00
,21 *0.500

L 50 ~ 1.50
2.00 2.00 :702
2.50 ~ 2.50

.310

3.00 3-00
, 260

4.00 !
: ::!

400
.223

.860 .174
5.00 5.00 .895
6.00 ~ 6.00

.140
. 91s

7.00 : 7.00
8.00 8.00
9.00 ;

: M
9.00

I %
.954 0s4

10.00 ~ 10.00 .075
m a i %: o“

I

The numerical vaIues in column 3 are given in Lamb’s paper aLready cited; those in column 4 are given
substantiality by Doctor Bateman, Report, No. 163 .National .4dvisory Committee for Aeronautics, 1923.
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